PCR Detection of Mixed and Zoonoses Malaria Using Plasmodium spp Dynein Light Chain (dlc-tctex) Gene

Main Article Content

Maureen W. Kariuki
Elijah K. Githui
Andrew G. McArthur
Rashid A. Aman
Nyamu M. Njagi
Agatha C. Mwangemi
Lucy W. Kamau

Abstract

Novel gene targets are needed in accurate diagnosis of malaria. Previous studies show that the dynein light chains (dlc) in Plasmodium are uniquely conserved within the species, possibly due to their role as the cargo adptor moiety. This study aimed at the development of PCR assay for the detection of Plasmodium based on the (dlc-Tctex) as a genus and species-specific tool in malaria diagnosis. Multiple primers were designed based on Plasmodium spp dlc(Tctex) genes. The primers were applied on PCR to detect malaria on clinical samples and on laboratory maintained isolates of P. falciparum and P. vivax for human infecting species and P. knowlesi and P. cynomolgi for zoonoses infection involving primates. The amplified PCR fragments were gene cleaned and sequenced. BLASTn e-values output from the raw nucleotide queries supports that the genes are uniquely conserved.  Species-specific primers amplified P.  falciparum infections with no cross-reactivity to P. vivax, P. knowlesi or P. cynomolgi species. In this assay only 11 out of the 30 microscope positive malaria positive clinical blood samples were positive for PCR detection of P. falciparum infection. Primers designed for Plasmodium genus amplified the target band in all clinical malaria samples but also had another specific band amplification. This preliminary data demonstrate that a species-specific dlc(Tctex) PCR assay can be used for detection of P. falciparum and optimized genus primers can be applied to differentiate mixed malaria infections.

Keywords:
Plasmodium malaria, PCR detection, dlc-Tctex.

Article Details

How to Cite
Kariuki, M. W., Githui, E. K., McArthur, A. G., Aman, R. A., Njagi, N. M., Mwangemi, A. C., & Kamau, L. W. (2019). PCR Detection of Mixed and Zoonoses Malaria Using Plasmodium spp Dynein Light Chain (dlc-tctex) Gene. Annual Research & Review in Biology, 32(4), 1-12. https://doi.org/10.9734/arrb/2019/v32i430091
Section
Original Research Article

References

Luxemburger C, Nosten F, White N. Naturally acquired immunity to vivax malaria. Lancet. 1999;10:162.

Sachs J, Malaney P. The economic and social burden of malaria. Nature. 2002; 7(415):680-5.

Nosten F, Van Vugt M, Price R, Luxemburger C, Thway K, et al. Effects of artesunate- mefloquine combination onincidence of Plasmodium falciparum malaria and mefloquine resistancein western Thailand: A prospective study. Lancet. 2000;356:297–302.

Hartman T, Rogerson S, Fischer P. The impact of maternal malaria on newborns. Ann Trop Paediatr. 2010;30:271-82.

Cunha C, Cunha B. Brief history of the clinical diagnosis of malaria: From Hippocrates to Osler. J Vector Borne Dis. 2008;45:194-9.

Kappe S, Vaughan A, Boddey J, Cowman A. That was then but this is now: Malaria research in the time of an eradication agenda. Science. 2010; 14(328):862-6.

Lee G, Jeon E, Le D, Kim T, Yoo J, et al. Development and evaluation of a rapid diagnostic test for Plasmodium falciparum, P. vivax, and mixed-species malaria antigens. Am J Trop Med Hyg. 2011;85:989-93.

Ta T, Hisam S, Lanza M, Jiram A, Ismail N, et al. First case of a naturally acquired human infection with Plasmodium cynomolgi. Malar J. 2014;24(13):68.

Collins W, Sullivan J, Jeffery G, Nace D, Williams T, et al. Mosquito infection studies with Aotus monkeys and humans infected with the Chesson strain of Plasmodiun vivax. Am J Trop Med Hyg. 2012;86:398-402.

Khim N, Siv S, Kim S, Mueller T, Fleischmann E, et al. Plasmodium knowlesi infection in humans, Cambodia, 2007-2010. Emerg Infect Dis. 2011;17: 1900-2.

Singh N, Kataria O, Singh M. The changing dynamics of Plasmodium vivax and P. falciparum in central India: Trends over a 27-year period (1975-2002). Vector Borne Zoonotic Dis. 2004;4:239-48.

Chin W, Contacos P, Collins W, Jeter M, Alpert E. Experimental mosquito-trans-mission of Plasmodium knowlesi to man and monkey. Am J Trop Med Hyg. 1968;17:355-8.

Cox-Singh J, Singh B. Knowlesi malaria: Newly emergent and of public health importance? Trends Parasitol. 2008;24: 406-10.

Cox-Singh J, Hiu J, Lucas S, Divis P, Zulkarnaen M. Severe malaria - A case of fatal Plasmodium knowlesi infection with post-mortem findings: A case report. Malar J. 2010;11:9-10.

Marks M, Gupta-Wright A, Doherty F, Singer M, Walker D. Managing malaria in the intensive care unit. Br J Anaesth. 2014; 113:910-921.

Mishra S, Panigrahi P, Mishra R, Mohanty S. Prediction of outcome in adults with severe falciparum malaria: A new scoring system. Malar J. 2007;6:24.

English M. Life-threatening severe malarial anaemia. Trans R Soc Trop Med Hyg. 2000;94:585-8.

Bruneel F, Tubach F, Corne P, Megarbane B, Mira J, et al. Severe imported malaria in adults (SIMA) study group. Severe imported falciparum malaria: A cohort study in 400 critically ill adults. PLoS One. 2010;5:e13236.

Marsh K, Forster D, Waruiru C, Mwangi I, Winstanley M, et al. Indicators of life- threatening malaria in African children. N Engl J Med. 1995;332:1399-404.

World Health Organization, Guidelines for the Treatment of Malaria. Geneva: World Health Organization. 2010;1–194.

Ruizendaal E, Dierickx S, Grietens K, Schallig H, Pagnoni F, et al. Success or failure of critical steps in community case management of malaria with rapid diagnostic tests: A systematic review. Malar J. 2014;13:229

Dinko B, Oguike M, Larbi J, Bousema TC. Sutherland, persistent detection of Plasmodium falciparum, P. malariae, P. ovale curtisi and P. ovale wallikeri after ACT treatment of asymptomatic Ghanaian school-children. Int J Parasitol Drugs Drug Resist. 2013;3:45-50.

Chew C, Lim Y, Lee P, Mahmud R, Chua K. Hexaplex PCR detection system for identification of five human Plasmodium species with an internal control. J Clin Microbiol. 2012;50:4012-9.

Lucchi N, Demas A, Narayanan J, Sumari D, Kabanywanyi A, Kachur S, Barnwell J, Udhayakumar V. Real-time fluorescence loop mediated isothermal amplification for the diagnosis of malaria. PLoS One. 2010; 29(5):e13733.

Mixson-Hayden T, Lucchi N, Udhayakumar V. Evaluation of three PCR-based diagnostic assays for detecting mixed Plasmodium infection. BMC Res Notes. 2010;31(3):88.

Githui E, De Villiers E, McArthur A. Plasmodium possesses dynein light chain classes that are unique and conserved across species. Infect Genet Evol. 2009;9: 337-43.

Tai A, Chuang Z, Bode C, Wolfrum U, Sung C. Rhodopsin’s carboxyterminal cytoplasmic tail act as a membrane receptor for cytoplasmic dynein by binding to the dynein light chain Tctex-1. Cell. 1999;97:877–87.

Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, et al. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389-402.

Schäffer L, Aravind T, Madden S, Shavirin J, Spouge et al. Improving the accuracy of PSI-BLAST protein database searches with composition-based statistics and other refinements. Nucleic Acids Res. 2001;29:2994-3005.

malERA Consultative Group on Diagnoses and Diagnostics, A research agenda for malaria eradication: Diagnoses and diagnostics. PLoS Med. 2011;8:e1000396.

Barber B, William T, Grigg M, Piera K, Yeo T, Anstey N. Evaluation of the sensitivity of a pLDH-based and an aldolase-based rapid diagnostic test for diagnosis of uncomplicated and severe malaria caused by PCR-confirmed Plasmodium knowlesi, Plasmodium falciparum and Plasmodium vivax. J Clin. Microbiol. 2013;51:1118-23.

Lucchi N, Poorak M, Oberstaller J, DeBarry J, Srinivasamoorthy G, et al. A new single- step PCR assay for the detection of the zoonotic malaria parasite Plasmodium knowlesi. PLoS One. 2012; 7(2):e31848.

Cox-Singh J, Davis T, Lee K, Shamsul S, Matusop A, et al. Plasmodium knowlesi malaria in humans is widely distributed and potentially life threatening. Clin Infect Dis. 2008;46:165-71.

Barber B, William T, Grigg M, Yeo T, Anstey N. Limitations of microscopy to differentiate Plasmodium species in a region co-endemic for Plasmodium falciparum, Plasmodium vivax and Plasmodium knowlesi. Malar J. 2013; 8(12):8.
DOI: 10.1186/1475-2875-12-8

Barber B, William T, Grigg M, Menon J, Auburn S, et al. A prospective comparative study of knowlesi, falciparum, and vivax malaria in Sabah, Malaysia: High proportion with severe disease from Plasmodium knowlesi and Plasmodium vivax but no mortality with early referral and artesunate therapy. Clin Infect Dis. 2013;56:383-97.

William T, Menon J, Rajahram G, Chan L, Ma G, et al. Severe Plasmodium knowlesi malaria in a tertiary care hospital, Sabah, Malaysia. Emerg Infect Dis. 2011;17:1248-55.

William T, Rahman H, Jelip J, Ibrahim M, Menon J, et al. Increasing incidence of Plasmodium knowlesi malaria following control of P. falciparum and P. vivax Malaria in Sabah, Malaysia. PLoS Negl Trop Dis. 2013;7:e2026.

Mombo-Ngoma G, Kleine C, Basra A, Würbel H, Diop D, et al. Prospective evaluation of artemether-lumefantrine for the treatment of non-falciparum and mixed-species malaria in Gabon. Malar J. 2012;11:120.

DOI: 10.1186/1475-2875-11-120

Mason D, Kawamoto F, Lin K, Laoboonchai A, Wongsrichanalai C. A comparison of two rapid field immuno-chromatographic tests to expert micros-copy in the diagnosis of malaria. Acta Trop. 2002;82:51-9.

Davis T, Mueller I, Rogerson S. Prevention and treatment of malaria in pregnancy. Future Microbiol. 2010;5:1599-613.

Gillet P, Mukadi P, Vernelen K, Van Esbroeck M, Muyembe J, et al. External quality assessment on the use of malaria rapid diagnostic tests in a non-endemic setting. Malar J. 2010;9:359.
DOI: 10.1186/1475-2875-9-359