Morphology and Molecular Biology of Benthic Java Sea Shark Ray Rhina ancylostoma Bloch and Scheider 1801 (Elasmobranchia: Rhinidae)

Main Article Content

Agus Hartoko
Delianis Pringgenies
Amelia Cahya Anggelina
Takashi Matsuishi

Abstract

Aims: Morphology and molecular biology of a rare shark-rays Rhina ancylostoma caught from Java sea.Indonesia.

Study Design: Morphology, morphometry and DNA analysis of the fish specimen.

Place and Duration of Study: Sample wascollected from fish auction hall at north Java, specimen now stored in Lab of Ichtiology. Department of Fisheries. Faculty of Fisheries and Marine Science. Diponegoro University, between March to December 2019.

Methodology: DNA extraction, amplification and molecular identification of fish sample.Yield of DNA supernatant transferred in an eppendeorf tube and stored in 4°C for further process. PCR amplification. Part of Mithocondrial DNA COI (Cytochrome Oxidase subunit-I) gen was amplified using Polymerase Chain Reaction (PCR) method. Then matched up with GenBank database at NCBI using Basic Local Alignment Search Tool (BLAST) analysis. Philogenetic tree was set using Neighbor-Joining method, Kimura-2 parameter model and 1,000 bootstrap replication. Some sequence from NCBI GenBank were inputted into philogenetic tree as comparison.

Results: Rhina ancylostoma as one of demersal shark rays catch from tropical shallow Java sea. Range of Total Length 73 – 200 cm and dominant Total Length catch 125 cm. Morphologyis characterised with three lines of spine thorn on the head, morphometry characteriswide of head to TL ratio 0.77. DNA analysis had confirmed the specimen of AH2 as Rhina ancylostoma based on homological match up of sequence of Gen Bank database with reference accesion number KU721837.1 with length sequence of 665 bpand identical similarity of 99.84% for specimen Accession number LC 505461.

Conclusion: Rhina ancylostoma as one of demersal shark rays catch from Java sea. Range Total Length (TL) of catch 73 – 200 cm and dominant TL catch range 101 – 125 cm. Morphologically character of wide head ratio with three lines of spine thorn on the head. Nearest genetic distance of 0.02 to Rhincobatushorkelii and 0.017 to R. australiae. Longest genetic distance of 0.243 to Potamotrygon motoro.

Keywords:
Morphology, molecular biology, shark-ray, Java-sea, Rhinidae

Article Details

How to Cite
Hartoko, A., Pringgenies, D., Anggelina, A. C., & Matsuishi, T. (2020). Morphology and Molecular Biology of Benthic Java Sea Shark Ray Rhina ancylostoma Bloch and Scheider 1801 (Elasmobranchia: Rhinidae). Annual Research & Review in Biology, 35(4), 19-31. https://doi.org/10.9734/arrb/2020/v35i430208
Section
Original Research Article

References

White WT, Last PR, Stevens JD, Yearsley GK, Fahmi D. Economically important sharks and rays of Indonesia (in Indonesian). Australian Centre for International Agricultural Research. 2006; 338.

Widodo AA, Mahulette RT. Species, size and fishing ground thresher shark (family alopidae) by catch of tuna longline indian ocean. Fisheries Journal of Indonesia. 2012;4(2):75-82.

Dian Arifiyani, Muslihuddin Aini SA. No Title. Monitoring on Sharks Catch of Java Sea. Loka Pengelolaan Sumberdaya Pesisir dan Laut.Serang Banten; 2014.

MMF. Sharks Production of Java Sea; 2012.

Ward-Paige CA, Davis B, Worm B. Global Population Trends and Human Use Patterns of Manta and Mobula Rays. PLoS ONE. 2013;8(9):e74835.

Dirk Steinke, Andrea M. Bernard, Rebekah L. Horn, Paul Hilton, Robert Hanner MSS. DNA analysis of traded shark fins and mobulid gill plates reveals a high proportion of species of conservation concern. 2006;7:9505 (9505):9505.
Available:Www.Nature.Com

Clarke SC, et al. Global estimates of shark catches using trade records from commercial markets. Ecology Letters. 2006;9(10):1115–1126.

Croll DA, Dewar H, Dulvy NK, Fernando D, Francis MP, Galván-Magaña F, Hall M, Heinrichs S, Marshall A, Mccauley D, Newton KM, Notarbartolo-Di-Sciara G, O’Malley M, O’Sullivan J, Poortvliet M, Roman M, Stevens G, Tershy BR, White, WT. Vulnerabilities and fisheries impacts: the uncertain future of manta and devil rays. Aquatic Conservation: Marine and Freshwater Ecosystems. 2016;26(3):562–575.
Available:https://doi.org/10.1002/aqc.2591

Zeng Y, et al. DNA barcoding of mobulid ray gill rakers for implementing CITES on elasmobranch in China. Scientific Reports. 2016;6(6).

Hartoko A. Oceanography and fisheries resources of Indonesia. Undip press. ISBN; 2010.

Dharmadi Benaya Simeon EM. Identification Training on Sharks and Rays. MMF-Coral Triangle Inisiative-WCS; 2019.

Walsh PS, Metzger DA HR. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques. 1991;10(4):506–513.

Alghozali FA, Wijayanti DP, Sabdono A. Short communication: Genetic diversity of scalloped hammerhead sharks (Sphyrna lewini) landed in muncar fishing port, Banyuwangi. Biodiversitas; 2019.
Available:https://doi.org/10.13057/biodiv/d200430

Baldwin CC, Mounts JH, Smith DG, Weigt, LA. Genetic identification and color descriptions of early life-history stages of Belizean Phaeoptyx and Astrapogon (Teleostei: Apogonidae) with comments on identification of adult Phaeoptyx. Zootaxa, 2009;22(2008):1–22. Available:https://doi.org/10.5281/zenodo.185750

Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution. 2007;24 (8):1596–1599. Available:https://doi.org/10.1093/molbev/msm092

Sadeghi R, Esmaeili HR. First documentation of an uncommon goby genus and species, Palutrus scapulopunctatus (de Beaufort, 1912) from the Persian Gulf (Teleostei: Gobiidae). Iranian Journal of Ichthyology. 2019;6(3): 143–149. Available:https://doi.org/10.22034/iji.v6i3.446

Alshawy F, Ibrahim A, Hussein C, Lahlah M. First record of the spotfin cardinal fish jaydia queketti (Gilchrist, 1903) (Teleostei: Apogonidae) from the Syrian marine waters (eastern mediterranean). Iranian Journal of Ichthyology. 2019;6(2):138–142.
Available:https://doi.org/10.22034/iji.v6i2.406

Compagno LVJ, Last PR. FAO species identification guide for fishery purposes. The living marine resources of the Western Central Pacific. Batoid fishes, chimaeras and bony fishes part 1 (Elopidae to Linophrynidae) (K. E. C. and V. H. N. (eds). 1999;3.

Compagno LJV, Ishihara H. Rhinobatos schlegelii. In: IUCN 2013. IUCN Red List of Threatened Species. Version; 2013. Available:www.iucnredlist.org

Notarbartolo di Sciara G, Bradai MN, Morey G, Marshall AD, Compagno LJV, Mouni A, Hicham M, Bucal D, Dulvy NAH. Coelho R. Rhinobatos rhinobatos. The IUCN Red List of Threatened Species, e.T63131A1.

MMF; Shark Production of North and South Java. Ministry of Marine and Fisheries; 2007.

Dudley SFJ, Cavanagh RD. Rhynchobatus djiddensis. The IUCN Red List of Threatened Species. 2015;8235.

Hartoko A, Wibowo P. Multi layer spatial analysis for demersal shrimp fishery and Sst Warming in the Semarang Coastal Waters. Journal of Coastal Development. 2011;15(1):17–23.

Hartoko A, Febrianto A, Pamungkas A, Fachruddin I, Helmi M, Hariyadi. The myth and legend of Sadai and Gaspar strait Bangka Belitung (Banca-Billiton) and oceanographic conditions. International Journal of GEOMATE. 2019;17(62):212–218. Available:https://doi.org/10.21660/2019.62.93965

NCBI. National Center for Biotechnology Information, National Institute for Health, USA; 2019.
Available:http://www.ncbi.nlm.nih.gov

Pringgenies D, Susilowati R. Highly commercial fisheries tawar fish: Molecular analysis dna mitochondrial coi gene sequence and proximate analysis from malacca strait, Riau. Jurnal Teknologi. 2016;78(4–2):33–38. Available:https://doi.org/10.11113/jt.v78.8149