Ethanolic Extract of Whole Unripe Plantain *Musa paradisiaca* Ameliorates Carbon Tetrachloride-Induced Hepatotoxicity and Nephrotoxicity in Wistar Rat

Temidayo Ogunmoyole a*, Olaitan Daniel Johnson b and Adewale Akeem Yusuff c

a Department of Medical Biochemistry, College of Medicine, Ekiti State University, Ado Ekiti, Ekiti State, Nigeria.
b Department of Science Laboratory Technology, School of Applied Sciences, Auchi Polytechnic, Auchi, Edo State, Nigeria.
c Department of Medical Laboratory Service, Osun State Primary Health Care Board, Osogbo, Osun State, Nigeria.

Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/ARRB/2021/v36i1230465

Editor(s):
(1) Prof. Ibrahim Farah, Jackson State University, USA.

Reviewer:
(2) Y. K. Prabhakar, India.

Complete Peer review History, details of the editor(s), Reviewers and additional Reviewers are available here: https://www.sdiarticle5.com/review-history/77164

Received 03 October 2021
Accepted 07 December 2021
Published 15 December 2021

ABSTRACT

**Aim:** Globally, burden of liver and kidney diseases has been on the increase in recent times. The present study therefore investigates the hepatoprotective and nephroprotective potentials of unripe plantain *Musa paradisiaca* on CCl₄-induced oxidative damage in albino rat. This was with the aim of providing a locally available and potent therapeutic alternative to the conventional drugs used in the management of liver and kidney diseases.

**Place and Duration of Study:** The study was conducted at the Department of Medical Biochemistry, College of Medicine, Ekiti State University, Ado Ekiti between July 2018 and January, 2019.

*Corresponding author: E-mail: temidayo.ogunmoyole@eksu.edu.ng*
Methodology: Twenty-five adult male albino rats were placed into seven groups of 5 animals each. Group I animals received distilled water throughout the duration of the experiment, while group II were exposed to CCl₄ only. Groups III, IV, V and VI received 3 ml/kg b.w of CCl₄ intraperitoneally but were post treated with 50 mg/kg and 100 mg/kg of unripe plantain extract respectively while group seven were post-treated with silymarin by oral gavage. Animals were sacrificed for the excision of the liver and kidney. Activities of creatinine kinase (CK), aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), as well as levels of urea, uric acid, bilirubin and lipid profile were assessed. Tissue antioxidant level of reduced glutathione (GSH) and activities of antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT) were also determined.

Results: Exposure to CCl₄ caused a significant derangement in lipid profile, resulting in the increase in serum triglyceride, total cholesterol and low density lipoprotein (LDL) while high density lipoprotein (HDL) level was diminished. Liver and kidney biomarkers (ALT, AST, ALP, CK, urea, uric acid and bilirubin were also significantly elevated in the serum relative to the control animals following exposure to CCl₄. Activities of antioxidant enzymes in the serum were markedly inhibited by CCl₄ exposure. Treatment with Musa paradisiaca extract caused a dose-dependent restoration of all biochemical parameters determined, while histopathological observation was in agreement with biochemical results.

Conclusion: These findings showed that Musa paradisiaca extract exhibited positive modulatory effects on the liver and kidney subjected to oxidative attack, hence, its potential usefulness in the management diseases associated with these organs.

Keywords: Biomarkers; carbon tetrachloride; unripe plantain; liver; kidney.

1. INTRODUCTION

The liver and kidney are critical to several biochemical processes including metabolism of drugs, hormones, toxins as well as maintenance of cellular homeostasis [1]. The liver is the main metabolic organ in the body and is considered a viable defense system against both environmental and metabolic toxicants [2]. Conversely, the kidneys are mainly involved in urinary excretion of metabolites and osmoregulation. The biological roles of these organs make them vulnerable to oxidative attack by xenobiotics [3]. Several synthetic drugs have been used in the management of liver and kidney diseases. Although, their potency cannot be overemphasized, they are often very expensive, hence they are not affordable by a large percentage of people in developing nations. Moreover, these therapies have been suggested to partially compensate for metabolic derangements seen in diseases, they do not necessarily correct the fundamental biochemical lesions [4]. Considering these limitations, the need for plant-based medicines as alternative therapies becomes critical. Plants are natural and are biologically friendly. They synthesize certain compounds that are primarily designed to protect them against invasion by both micro and macro-predators. Co-incidentally, these compounds such as polyphenolic substances, melatonin, carotenoids, quercetin, resveratrol, vitamin E, vitamin C, L-carnitine and coenzyme Q10 [5-8] have been found to possess medicinal properties that can be exploited by man in the management of diseases. These phytochemicals, which act as antioxidants protect critical organs and macromolecules from oxidative attack of endogenous and exogenous free radicals [9,10].

Plantain (Musa paradisiaca) is cultivated in several tropical countries of the world. It is rich in fiber, iron, serotonin, minerals and vitamins [11,12]. According to an estimate by WHO, about 80% of the population in developing nations of the world recognized the use of plantain for enhancing wound healing [13-18] In fact, unripe plantain pulp has been used as poultice [18,16] in the management of skin inflammation due to its ability to stimulate angiogenesis by virtue of collagen fibres synthesis and remodeling [19-21]. Recently, reports have recommended plantain meal as dietary approach for the management of diabetes and other diseases related to dysfunctional lipid profile [22,23]. Anticancer and anti-inflammatory potentials of plantain in cell lines and animal models respectively have been documented [24,15,16]. Folkloric reports have indicated that unripe plantain is helpful in the management of hepatic and renal disorders including anemia [11,12]. Considering the vast medicinal relevance of plantain in traditional parlance, coupled with an ever-increasing burden
of liver and kidney diseases, there is a dire need to investigate its curative potential in animal models of hepatotoxicity and nephrotoxicity. Hence, this study.

2. MATERIALS AND METHODS

2.1 Collection, Preparation and Extraction of Unripe Plantain

Unripe plantain fruit were obtained from a local farm in Ado Ekiti and authenticated at the Department of Plant Science, Ekiti State University, Ado Ekiti, Nigeria.

2.2 Reagents and Chemicals

All experimental parameters were determined using diagnostic kits from Rando Chemicals Ltd, England.

2.3 Preparation of Extract

Fresh unripe plantains (300 g) were washed with distilled water, weighed, chopped into pieces without peeling and extracted in 80% ethanol for 72 hours to allow for extraction. The supernatant was filtered using Whatman filter paper. The filtrate was then freeze dried, labelled as crude extract and kept in an airtight container in the refrigerator.

2.4 Experimental Animals

Twenty-five (25) male wistar rats of average weight 200g were purchased from the animal house of the College of Medicine, Ekiti State University, Ado-Ekiti. All experimental animals were acclimatized for one week and housed in neat metallic cages at standard temperature, relative humidity as well as 12/12-h light and dark cycle. The animals were granted unrestricted access to food and water ad libitum on a daily basis. Rat bedding were routinely changed and replaced for the period of the experiment. The 25 rats were randomly placed into five groups and treated as follows:

2.5 List 1. Animal Treatment

<table>
<thead>
<tr>
<th>Group</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Animal feed and distilled water only</td>
</tr>
<tr>
<td>II</td>
<td>3 ml/kg bw CCl₄ only</td>
</tr>
<tr>
<td>III</td>
<td>3 ml/kg b.w CCl₄ + 50 mg/kg bw. <em>M. paradisiaca</em></td>
</tr>
<tr>
<td>IV</td>
<td>3 ml/kg b.w CCl₄ + 100 mg/kg bw. <em>M. paradisiaca</em></td>
</tr>
<tr>
<td>V</td>
<td>3 ml/kg b.w CCl₄ + 100 mg/kg bw. silymarin</td>
</tr>
</tbody>
</table>

Animals were fasted 24 h before sacrifice on the 15th day of commencement of the work.

2.6 Preparation of Organs Homogenate

Animals were decapitated under very mild, cold-ether anesthesia and quickly dissected to excise the liver, kidney as well as serum. Ten percent (10%) homogenate each of the liver and kidney were prepared separately in 6.8mM potassium phosphate buffer, (pH 7.4) using chilled pestle and mortar. The resulting homogenate was centrifuged at 10,000 rpm for 10 min at 4 °C to obtain a supernatant which was stored in a refrigerator and used for the determination of biochemical parameters.

2.7 Preparation of serum

Heart of experimental animals were punctured immediately after decapitation while the animals were still breathing. Blood was collected into plain sample bottles and allow to stand for coagulation. Whole blood (coagulated) was then centrifuged at 3000 rpm for 15 min to obtain the serum which was gently decanted and kept in the refrigerator.

2.8 Determination of Biochemical Parameters

Creatine kinase was measured following the method of Mattenheimer [25]. Aspartate aminotransferase (AST) and alanine amino transferase (ALT) activity were assayed as described by Reitman and Frankel [26], while and alkaline phosphatase (ALP) was determined according to Englehardt et al. [27]. Lipid profile: triglycerides [28], total cholesterol [29], LDL [30] and HDL [31] were assayed according to established protocols. Catalase (CAT) and superoxide dismutase (SOD) were assayed following the methods of Sinha [32] and Misra [33] respectively. Reduced glutathione (GSH) level was determined by the method of Beutler et al. [34] while the modified Biuret method described by Weichselbaum [35] was followed for the determination of total protein.

2.9 Statistical Analysis

All values are expressed as mean ± SD. Statistical evaluation was done using One Way Analysis of Variance (ANOVA) followed by Duncan’s Multiple Range Test (DMRT) by using SPSS 11.09 for windows. The significance level was set at p =0.05.
3. RESULTS

Exposure to CCl₄ resulted in marked (P=0.05) derangement in lipid profile in all tissues of experimental animals analyzed (Table 1). Treatment with M. paradisiaca extract caused a dose-dependent restoration of deranged lipid profile in a manner comparable to animals treated with silymarin (Table 1). Serum activities of liver enzyme biomarkers such as alkaline phosphatase (ALP), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were significantly elevated following exposure to CCl₄ (Table 2) relative to the negative control animals. Post administration of M. paradisiaca extract, however, reversed the toxic trend at a level comparable to animals treated with standard drug (Table 2). Serum and tissue levels of kidney biomarkers such as urea, uric acid and bilirubin were significantly (P=0.05) elevated after administering CCl₄ while oral administration of M. paradisiaca extract to exposed rats brought about a marked reversal of the toxic trend in a dose-dependent manner (Table 2). Activities of antioxidant enzymes such as superoxide dismutase and catalase as well as creatine kinase were markedly (P=0.05) depleted in animals exposed to CCl₄ toxicity (Table 3), while treatment with M. paradisiaca extract caused a dose-dependent restoration of activities in a manner comparable with animals treated with standard drug. On the other hand, serum level of GSH and total protein (Table 3) respectively was significantly decreased following exposure to CCl₄ (Table 3). However, treatment with plantain extract restored the parameters to a level comparable to the negative control.

4. DISCUSSION

The therapeutic potential of unripe plantain pulp in the management of hepatic and renal diseases was investigated. Established liver and kidney markers have been used routinely in monitoring the health status of both organs. Specifically, aspartate aminotransferase (AST), alanine aminotransaminase (ALT) and alkaline phosphatase are reliable markers of hepatic disorders [36-38]. Exposure of experimental rats to carbon tetrachloride toxicity resulted in significant elevation in the serum level of these biomarkers relative to animals that were not exposed. Notably, the surge in serum level of these biomarkers implies free-radical induced oxidative injury to the hepatocytes. Increased ALT level indicates hepatocellular damage followed by cardiac tissue damage and is usually accompanied by a rise in AST activity. ALP is a marker of biliary function and cholestasis. However, functional alterations of liver can lead to different pathologies in other organs. Serum level of these enzymes become elevated in cases of liver diseases or damage because they are normally contained inside hepatocyte. They only leak into the blood stream when the liver cells are damaged. The spill-over of the enzyme into the blood is routinely measured as a marker of abnormal cell damage; hence, a markedly raised serum activity indicates severe liver disease [39]. These biochemical parameters were on the increase as a result of tetrachloromethane (CCl₄)-induced oxidative attack on the liver cells. This might be due to deterioration and necrosis of the liver cells by the oxidative attack of trichloromethyl radicals resulting in the release of transaminases into the blood stream [40-41]. This observation is in line with the earlier reports of [42-45] where liver biomarkers of experimental animals were increased following exposure to pesticides. Treatment of exposed animals with unripe plantain extract caused a significant, dose-dependent restoration of AST, ALT and ALP activities in the serum and tissue homogenates relative to exposed animals that were not treated with the extract. These findings are in agreement with Chinedum and Polycarp [46], and suggests the hepatoprotective potentials of unripe plantain extract which can be exploited in the management of liver diseases.

Lipid profile (low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), total cholesterol (TC) and triacylglycerol (TG) could provide useful information on the predisposition of the heart to atherosclerosis and its associated coronary heart disease (Yakubu et al., 2008). The significant reduction in triacylglycerol of exposed but untreated animals may be associated with impaired lipolysis while reduction in HDL-C at all doses investigated may not be clinically beneficial to the animals since the rate at which plasma cholesterol are carried to the liver were also decreased. Furthermore, the enhanced level of cholesterol and LDL-C may suggest cardiovascular risk in the animals. This is supported in the present study by the increase in the computed atherogenic index, a useful indicator of cardiovascular diseases [47]. The unripe plantain extract was able to restore the level of triacylglycerol and carp up the level of HDL-C compared to the control (Table1). This
**Table 1. Effect of unripe plantain extract on lipid profile of animals exposed to CCl₄ toxicity**

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Negative control</th>
<th>Positive control CCl₄ (3ml/kg bw) only</th>
<th>CCl₄ + Unripe Plantain (50 ml/kg bw)</th>
<th>CCl₄ + Unripe Plantain (100 ml/kg bw)</th>
<th>CCl₄ + Silymarin (100mg/kg bw)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHOL</td>
<td>73.28±1.84 a</td>
<td>140.21±0.00*</td>
<td>105.24±0.56*</td>
<td>88.43±1.25*</td>
<td>77.76±1.96*</td>
</tr>
<tr>
<td>TRIG</td>
<td>23.05±1.30 a</td>
<td>46.22±1.18*</td>
<td>39.87±0.61*</td>
<td>31.46±0.75*</td>
<td>25.35±0.81*</td>
</tr>
<tr>
<td>HDL</td>
<td>15.91±0.68 a</td>
<td>10.10±0.04*</td>
<td>11.33±0.59*</td>
<td>12.88±0.43*</td>
<td>13.35±0.29*</td>
</tr>
<tr>
<td>LDL</td>
<td>54.10±0.53 a</td>
<td>120.87±0.46*</td>
<td>102.15±1.53*</td>
<td>71.38±1.31*</td>
<td>59.34±1.22*</td>
</tr>
<tr>
<td>KIDNEY</td>
<td>82.84±1.80 a</td>
<td>38.49±0.65*</td>
<td>35.22±0.59*</td>
<td>27.83±0.43*</td>
<td>24.16±5.89*</td>
</tr>
<tr>
<td>TRIG</td>
<td>7.75±0.50 a</td>
<td>11.6±0.50*</td>
<td>10.42±0.51*</td>
<td>9.63±0.39*</td>
<td>9.51±0.74 a</td>
</tr>
<tr>
<td>HDL</td>
<td>6.40±0.07 a</td>
<td>3.57±0.11*</td>
<td>3.32±0.42*</td>
<td>3.14±0.61*</td>
<td>5.61±0.25 a</td>
</tr>
<tr>
<td>LDL</td>
<td>16.01±1.71 a</td>
<td>32.6±0.68*</td>
<td>28.56±0.10 a</td>
<td>21.12±0.04 a</td>
<td>16.64±16 a</td>
</tr>
</tbody>
</table>

Data represents mean ± SEM values animal experiments performed in triplicate 'a' indicates significant difference (p = 0.05) from the control, (n= 5).

**Table 2. Effect of unripe plantain extract on selected biomarkers of liver and kidney injury**

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Negative control</th>
<th>Positive control CCl₄ (3ml/kg bw) only</th>
<th>CCl₄ + Unripe Plantain (50 ml/kg bw)</th>
<th>CCl₄ + Unripe Plantain (100 ml/kg bw)</th>
<th>CCl₄ + Silymarin (100mg/kg bw)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALP</td>
<td>85.37±0.00 a</td>
<td>145.96±0.00*</td>
<td>121.78±4.03</td>
<td>98.83±1.25*</td>
<td>96.39±1.00*</td>
</tr>
<tr>
<td>ALT</td>
<td>66.09±0.88 a</td>
<td>106.69±1.7*</td>
<td>76.92±0.34*</td>
<td>64.36±0.34*</td>
<td>66.92±0.46*</td>
</tr>
<tr>
<td>AST</td>
<td>75.19±1.06 a</td>
<td>113.01±1.08*</td>
<td>83.30±1.46*</td>
<td>78.84±0.98*</td>
<td>73.36±1.49*</td>
</tr>
<tr>
<td>KIDNEY</td>
<td>80.17±0.00 a</td>
<td>125.96±0.00*</td>
<td>120.37±4.32*</td>
<td>80.63±0.43*</td>
<td>96.39±1.00*</td>
</tr>
<tr>
<td>ALT</td>
<td>56.14±0.94 a</td>
<td>158.71±7.56*</td>
<td>73.50±0.39*</td>
<td>63.88±0.56*</td>
<td>64.06±0.97*</td>
</tr>
<tr>
<td>AST</td>
<td>69.58±1.28 a</td>
<td>99.74±1.08*</td>
<td>74.90±0.64*</td>
<td>68.90±1.24*</td>
<td>75.27±1.47*</td>
</tr>
<tr>
<td>UREA</td>
<td>52.69±3.67 a</td>
<td>93.08±0.00*</td>
<td>57.38±2.18*</td>
<td>54.65±0.63*</td>
<td>58.95±0.00*</td>
</tr>
<tr>
<td>URIC</td>
<td>24.36±1.09 a</td>
<td>50.48±0.33*</td>
<td>47.00±3.59*</td>
<td>33.45±3.58*</td>
<td>25.55±1.55*</td>
</tr>
<tr>
<td>LIVER</td>
<td>55.08±1.00 a</td>
<td>112.91±0.00*</td>
<td>94.88±0.51*</td>
<td>69.56±2.86*</td>
<td>65.41±1.38*</td>
</tr>
<tr>
<td>ALT</td>
<td>44.99±3.23 a</td>
<td>116.5±1.18*</td>
<td>84.53±0.36*</td>
<td>73.08±0.45*</td>
<td>66.03±0.06*</td>
</tr>
<tr>
<td>AST</td>
<td>69.04±1.55 a</td>
<td>104.5±4.32*</td>
<td>84.34±1.05*</td>
<td>73.50±1.44*</td>
<td>68.6±1.04*</td>
</tr>
<tr>
<td>T. BIL</td>
<td>24.85±1.28 a</td>
<td>46.48±0.18*</td>
<td>41.03±0.47*</td>
<td>32.11±1.04*</td>
<td>26.65±1.15*</td>
</tr>
</tbody>
</table>

Data represents mean ± SEM values animal experiments performed in triplicate 'a' indicates significant difference (p = 0.05) from the control, (n= 5).
Table 3. Effect of unripe plantain extract on selected antioxidant enzymes

<table>
<thead>
<tr>
<th>Parameters (IU/L)</th>
<th>Positive Control</th>
<th>Negative control CCl₄ (3ml/kg bw)</th>
<th>CCl₄ + Unripe Plantain (50 mg/kg bw)</th>
<th>CCl₄ + Unripe Plantain (100 mg/kg bw)</th>
<th>CCl₄ + Silymarin (100 mg/kg bw)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SERUM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOD</td>
<td>8.47±0.49</td>
<td>5.05±0.35</td>
<td>5.73±0.53</td>
<td>6.91±0.88</td>
<td>7.83±1.04</td>
</tr>
<tr>
<td>CAT</td>
<td>4.36±0.18</td>
<td>1.84±0.05</td>
<td>2.16±0.72</td>
<td>2.99±0.81</td>
<td>3.77±0.60</td>
</tr>
<tr>
<td>GSH</td>
<td>6.81±1.10</td>
<td>4.53±1.22</td>
<td>5.03±0.95</td>
<td>6.17±0.66</td>
<td>6.04±0.87</td>
</tr>
<tr>
<td>TP</td>
<td>3.75±0.20</td>
<td>1.67±0.60</td>
<td>2.14±0.57</td>
<td>2.79±0.27</td>
<td>2.59±0.18</td>
</tr>
<tr>
<td>KIDNEY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOD</td>
<td>5.26±0.02</td>
<td>2.28±0.12</td>
<td>3.63±0.27</td>
<td>3.84±0.36</td>
<td>3.62±0.21</td>
</tr>
<tr>
<td>CAT</td>
<td>1.36±0.11</td>
<td>0.64±0.07</td>
<td>0.95±0.04</td>
<td>1.39±0.14</td>
<td>1.47±0.60</td>
</tr>
<tr>
<td>GSH</td>
<td>2.52±0.17</td>
<td>0.93±0.02</td>
<td>1.64±0.08</td>
<td>2.27±0.28</td>
<td>1.95±0.04</td>
</tr>
<tr>
<td>TP</td>
<td>2.97±0.02</td>
<td>2.14±0.01</td>
<td>2.48±0.12</td>
<td>2.93±0.16</td>
<td>2.74±0.11</td>
</tr>
<tr>
<td>LIVER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOD</td>
<td>2.04±0.10</td>
<td>1.42±0.42</td>
<td>1.83±0.32</td>
<td>1.97±0.19</td>
<td>2.11±0.32</td>
</tr>
<tr>
<td>CAT</td>
<td>1.14±0.13</td>
<td>0.26±0.21</td>
<td>0.74±0.16</td>
<td>1.04±0.43</td>
<td>0.97±0.22</td>
</tr>
<tr>
<td>GSH</td>
<td>1.95±0.03</td>
<td>0.39±0.01</td>
<td>0.65±0.08</td>
<td>1.41±0.12</td>
<td>1.79±0.03</td>
</tr>
<tr>
<td>TP</td>
<td>1.88±0.13</td>
<td>1.07±0.09</td>
<td>1.39±0.05</td>
<td>1.69±0.45</td>
<td>1.58±0.43</td>
</tr>
</tbody>
</table>

Data represents mean ± SEM values animal experiments performed in triplicate ‘a’ indicates significant difference (p = 0.05) from the control, (n= 5).
observation is in agreement with earlier reports [48-50] and suggests the potential usefulness of plantain in the management of cardiovascular diseases.

Superoxide dismutase (SOD) and catalase (CAT) are the two major radical scavenging enzymes. Superoxide dismutase is the main enzymatic defense against the superoxide anion. It detoxifies the superoxide anion, thus converting it into hydrogen peroxide and water. Although SOD is an antioxidant enzyme, some studies have suggested that it’s over expression is actually harmful to cells [51]. The toxic effect of reactive oxygen species observed in many cells with over expressed SOD has been linked to elevated levels of hydrogen peroxide (H₂O₂) and accompanying oxidative damage following hydroxyl radical formation [52]. In the present study, treatment of CCl₄-exposed animals with M. parasidiaca extract reactivated the activity of SOD in the serum. This is in agreement with Friday and Chinedu [53].

Catalase is a heme protein that catalyzes the reduction of hydrogen peroxides and protects tissues from hydroxyl radicals. Consequently, the decrease in activities of SOD and CAT as well as GSH level in both liver and kidney during disease condition may be due to over-production of reactive oxygen species in animals [54]. The overproduction of free radicals in turn, causes oxidative damages to membrane's lipid and protein, and ultimately leads to a decrease in the content of GSH and activity of its dependent enzyme. However, treatment of exposed animals with unripe plantain extract ameliorated the activities of these antioxidant enzymes as well as GSH (Table 3). This is in agreement with Ji et al. [55].

5. CONCLUSION

In the present study, integrity of the kidney was assessed through serum urea and uric acid levels. All animals exposed to CCl₄ showed significantly increased level of serum urea and uric acid relative to unexposed animals. This suggests the nephrotoxic potential of CCl₄ (Table 2). However, administration of unripe plantain extract restored the serum urea and uric acid levels to values comparable with unexposed animals. This observation is in line with the report of Friday and Chinedu [53]. This is an indication that unripe plantain is a potential nephroprotective agent that can be exploited in the management of kidney diseases.

In agreement with previous research [48-50], unripe plantain restored deranged lipid profile, remedied distorted liver and kidney biomarkers as well as reactivated the activities of antioxidant enzymes. Hence, it is a potential plant with hepatoprotective and nephroprotective properties that can be exploited in the management of liver and kidney diseases.

DISCLAIMER

The products used for this research are commonly and predominantly use products in our area of research and country. There is absolutely no conflict of interest between the authors and producers of the products because we do not intend to use these products as an avenue for any litigation but for the advancement of knowledge. Also, the research was not funded by the producing company rather it was funded by personal efforts of the authors.

ETHICAL APPROVAL

All authors hereby declare that "Principles of laboratory animal care" (NIH publication No. 85-23, revised 1985) were followed, as well as specific national laws where applicable. All experiments have been examined and approved by the appropriate ethics committee.

ACKNOWLEDGEMENT

Authors acknowledge the support of Mr. Oyelade of the Federal Polytechnic Ado Ekiti, Nigeria.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES


22. Ajiboye BO, Oloyede HOB, Salawu MO. Antihyperglycemic and antidiyslipidemic


