Lipids: Role in Embryonic Development (Review)

Main Article Content

Marisol León
A. C. B. Rodrigues
A. O. M. Turquetti
A. D. Cereta
L. F. Melo
L. M. Durand
A. L. J. Delgado
D. Evangelista-Leite
M. A. Miglino


Aims: We propose to briefly review the specific role of lipids in embryonic structures development.

Results: Lipids are organic substances insoluble in water, divided into several classes, such as fatty acids, glycolipids, phospholipids, ceramides, sphingolipids, and stereo-lipids. They participate in processes of cellular metabolism and embryonic development which are associated with signalling, proliferation and cell migration. They act in developmental processes such as calcification and bone mineralization, pulmonary maturity, cellular differentiation, and neural survival, epithelial cells polarization and muscle formation, in which phospholipids as a major group, work more regularly. Lipids during embryonic development work directly as transport molecules or cell markers. In addition to an imbalance in its enzymatic and protein precursors (such as choline kinase), lipids can increase or decrease lipid concentration in cells, prevent its biotransformation, or affect its synergy with other molecules, leading to failures in the formation of organs such as the heart, brain, and bones. This aims to further the understanding of these processes and highlight its feasibility for future clinical applications.

Conclusion: Lipids maintain cell membrane integrity in blastocysts, transport calcium to nerve and bone cells, facilitate neural apoptosis, and promote pulmonary maturation. These results aid in the understanding and prediction of alterations in lipidic metabolic syndromes in several pathological disorders during organ development.

Lipids, embryonic development, embryonic lethality, pulmonary maturation, neural development, bone formation

Article Details

How to Cite
León, M., Rodrigues, A. C. B., Turquetti, A. O. M., Cereta, A. D., Melo, L. F., Durand, L. M., Delgado, A. L. J., Evangelista-Leite, D., & Miglino, M. A. (2019). Lipids: Role in Embryonic Development (Review). Annual Research & Review in Biology, 33(3), 1-9.
Review Article


Mateos G, Rebollar P, Medel P. Utilización de grasas y productos lipídicos en alimentación animal: Grasas puras y mezclas. Mundo Veterianrio. 2000;4(2): 78–88.

Park H, Haynes CA, Nairn AV, Kulik M, Dalton S, Moremen K, Merrill AH. Transcript profiling and lipidomic analysis of ceramide subspecies in mouse embryonic stem cells and embryoid bodies. J Lipid Res. 2010;51(3):480–9.

Sher RB, Aoyama C, Huebsch KA, Ji S, Kerner J, Yang Y, Frankel WN, Hoppel CL, Wood PA, Vance DE, Cox GA. A rostrocaudal muscular dystrophy caused by a defect in choline kinase beta, the first enzyme in phosphatidylcholine biosynthesis. J Biol Chem. 2006;281(8): 4938-48.

Kainu V, Hermansson M, Somerharju P. Electrospray ionization mass spectrometry and exogenous heavy isotope-labeled lipid species provide detailed information on aminophospholipid acyl chain remodeling. J Biol Chem. 2008;283(6):3676–87.

Sudano MJ, Rascado TDS, Tata A, Belaz KRA, Santos VG, Valente RS, Mesquita FS, Ferreira CR, Araujo JP, Eberlin MN, Landim-Alvarenga FD. Lipidome signatures in early bovine embryo development. Theriogenology. 2016;86(2): 472–84.

Hallman M, Slivka S, Wozniak P, SillS J. Perinatal Development of Myoinositol Uptake into Lung Cells : Surfactant Phosphatidylglycerol and Phosphatidylinositol. Synth Rabbit. 2002; 20(2):179–185.

Aoyama C, Liao H, Ishidate K. Structure and function of choline kinase isoforms in mammalian cells. Prog Lipid Res. 2004; 43(3):266-81.

Wu G, Aoyama C, Young SG, Vance DE. Early embryonic lethality caused by disruption of the gene for choline kinase α, the first enzyme in phosphatidylcholine biosynthesis. J Biol Chem. 2008;283(3): 1456-62.

Wu G, Sher RB, Cox GA, Vance DE. Biochimica et biophysica acta differential expression of choline kinase isoforms in skeletal muscle explains the phenotypic variability in the rostrocaudal muscular dystrophy mouse. Biochim Biophys Acta. 2010;1801(4):446–54.

Pinal N, Goberdhan DCI, Collinson L, Fujita Y, Cox IM, Wilson C, Pichaud F. Regulated and polarized PtdIns(3,4,5)P3 accumulation is essential for apical membrane morphogenesis in photoreceptor epithelial cells. Curr Biol. 2006;16(2):140–9.

Wang L, Magdaleno S, Tabas I, Jackowski S. Early embryonic lethality in mice with targeted deletion of the CTP: phosphocholine cytidylyltransferase α gene (Pcyt1a). Mol Cell Biol. 2005;25(8):3357-63.

Kojima R, Endo T, Tamura Y. A phospholipid transfer function of ER-mitochondria encounter structure revealed in vitro. Sci Rep. 2016;6:30777.

Steenbergen R, Nanowski TS, Beigneux A, Kulinski A, Young SG, Vance JE. Disruption of the phosphatidylserine decarboxylase gene in mice causes embryonic lethality and mitochondrial defects. J Biol Chem. 2005;280(48): 40032–40.

Chen T, Yang H, Hung C, Ou M, Pan Y, Cheng M, Stern A, Lo SJ, Chiu DT. Impaired embryonic development in glucose-6-phosphate dehydrogenase-deficient Caenorhabditis elegans due to abnormal redox homeostasis induced activation of calcium-independent phospholipase and alteration of glycerophospholipid metabolism. Cell Death Dis. 2017;8(1):e2545.

Yang H, Chen T, Wu Y, Cheng K, Lin Y, Cheng M, Ho HY, Lo SJ, Chiu DT.. Glucose 6-phosphate dehydrogenase deficiency enhances germ cell apoptosis and causes defective embryogenesis in Caenorhabditis elegans. Cell Death Dis. 2013;4:e616.

Budirahardja Y, Doan TD, Zaidel-bar R. Glycosyl Phosphatidylinositol Anchor Biosynthesis Is Essential for Maintaining Epithelial Integrity during Caenorhabditis elegans Embryogenesis.PloS Genet. 2015; 11(3):e1005082.

Wang X, Rao RP, Kosakowska-cholody T, Masood MA, Southon E, Zhang H, Berthet C, Nagashim K, Veenstra TK, Tessarollo L, Acharya U, Acharya JK. Mitochondrial degeneration and not apoptosis is the primary cause of embryonic lethality in ceramide transfer protein mutant mice. J Cell Biol. 2009;184(1):143–58.

Figarar L, Xu H, Garcia HG, Golding I, Sokac AM. The plasma membrane flattens out to fuel cell surface growth during Drosophila cellularization. Dev Cell. 2013; 27(6):648–55.

Hesse D, Jaschke A, Chung B, Schurmann A. Trans -Golgi proteins participate in the control of lipid droplet and chylomicron formation. Biosci Rep. 2013;33(1):1-10.

Layerenza JP, González P, Bravo MMG De, Polo MP, Sisti MS, Ves-losada A. Biochimica et Biophysica Acta Nuclear lipid droplets : A novel nuclear domain. BBA - Mol Cell Biol Lipids. 2013;1831(2):327–40.

Wuthier RE. Lipid composition of isolated epiphyseal cartilage cells, membranes and matrix vesicles. Biochim Biophys Acta. 1975;409(1):128-43.

Peress NS, Anderson HC, Sajdera SW. The lipids of matrix vesicles from bovine fetal epiphyseal cartilage. Calcif Tissue Res. 1974;14(1):275-81.

Merolli A, Santin M. Role of phosphatidyl-serine in bone repair and its technological exploitation. Molecules. 2009;14(12):5367-81.

Crooke CE, Pozzi A, Carpenter GF. PLC-γ1 regulates fibronectin assembly and cell aggregation. Exp Cell Res. 2009;315(13): 2207–14.

Brunet A, Datta SR, Greenberg ME. Transcription-dependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway. Curr Opin Neurobiol. 2001;11(3):297-305.

Ryoul Y, Kang D, Lee C, Seok H, Follo MY, Cocco L, Suh PG, Primary phospholipase C and brain disorders. Adv Biol Regul. 2015;61:80-50.

Zurashvili T, Cordon-Barris L, Ruiz-Babot G, Zhou X, Lizcano JM, Gomez N, Gimenez-Llort L, Bayascas JR. Interaction of PDK1 with Phosphoinositides Is Essential for Neuronal Differentiation but Dispensable for Neuronal Survival. Mol Cell Biol. 2013;33(5):1027–40.

Noraishah AM, Turmaine M, Greene NDE, Copp AJ. EphrinA-EphA receptor interactions in mouse spinal neurulation : implications for neural fold fusion. 2009; 568:559–68.

Funfschilling U, Jockusch WJ, Sivakumar N, Möbius W, Corthals K, Sai Li, Quintes S, Kim Y, Schaap IA, Rhee JS, Nave KA, Saher G. Critical time window of neuronal cholesterol synthesis during neurite outgrowth. J Neurosci. 2012;32(22):7632-45.

Batenburg JJ, Klazinga W, Van Golde LM. Regulation of phosphatidylglycerol and phosphatidylinositol synthesis in alveolar type II cells isolated from adult rat lung. FEBS Lett. 1982;147(2):171–4.

Bleasdale JE, Maberry MC, Quirk JG. Myo-inositol homeostasis in foetal rabbit lung. Biochem J. 1982;206(1):43–52.

Kniazeva M, Shen H, Euler T, Wang C, Han M. Regulation of maternal phospholipid composition and IP 3 -dependent embryonic membrane dynamics by a specific fatty acid metabolic event in C . elegans. Genes Dev. 2012; 26(6):554-66.

Munday AD, López JA. Posttranslational protein palmitoylation: Promoting platelet purpose. Arterioscler Thromb Vasc Biol. 2007;27(7):1496–9.

Comer FI, Parent CA. Phosphoinositides specify polarity during epithelial organ development. Cell. 2007;128(2):239-40

Janetopoulos C, Devreotes P. Phosphoinositide signaling plays a key role in cytokinesis. J Cell Biol. 2006;174(4): 485-90.

Reversi A, Loeser E, Subramanian D, Schultz C, Renzis S De. Plasma membrane phosphoinositide balance regulates cell shape during Drosophila embryo morphogenesis. J Cell Biol. 2014; 205(3):395-408.

Elashry MI, Baulig N, Heimann M, Bernhardt C, Wenisch S, Arnhold S. Research in Veterinary Science Osteogenic diferentiation of equine adipose tissue derived mesenchymal stem cells using CaCl 2. Res Vet Sci. 2018;117: 45-53.

Dufrane D. Impact of age on human adipose stem cells for bone tissue engineering. 2017;26(9):1496–504.

Lee Y, Lee S, Cheol S, Sung J, Kadam AA. Surface functionalization of halloysite nanotubes with supermagnetic iron oxide, chitosan and 2-D calcium-phosphate nano fl akes for synergistic osteoconduction enhancement of human adipose tissue-derived mesenchymal stem cells. Colloids Surfaces B Biointerfaces. 2019;173:18- 26.

Gojanovich AD, Gimenez MC, Masone D, Rodriguez TM, Dani C. Human adipose-derived mesenchymal stem / stromal cells handling protocols. Lipid Droplets and Proteins Double-Staining. Front Cell Dev Biol. 2018,6:331-16.

Liu Q, Cen L, Zhou H, Yin S, Liu G, Liu W, Cui LN. Extracellular signal-related kinase signaling pathway in osteogenic differentiation of human adipose-derived stem cells and in adipogenic transition initiated by dexamethasone. O Title. Tissue Eng Part A. 2009;15(11):3487-3497.

Genge BR, Wu LNY, Wuthier RE. Kinetic analysis of mineral formation during in vitro modeling of matrix vesicle mineralization: Effect of annexin A5, phosphatidylserine, and type II collagen. Anal Biochem. 2007; 367(2):159–66.

Houston B, Stewart AJ, Farquharson C. PHOSPHO1 - A novel phosphatase specifically expressed at sites of mineralisation in bone and cartilage. Bone. 2004;34(4):629-37.

Eberlin LS, Ifa DR, Wu C, Cooks RG. Three-dimensional vizualization of mouse brain by lipid analysis using ambient ionization mass spectrometry. Angew Chem Int Ed Engl. 2010;49(5):873- 6.

Gallego-Ortega D, Gómez del Pulgar T, Valdés-Mora F, Cebrián A, Lacal JC. Involvement of human choline kinase alpha and beta in carcinogenesis: A different role in lipid metabolism and biological functions. Adv Enzyme Regul. 2011;51(1):183–94.

Li Z, Wu G, Van Der Veen JN, Hermansson M, Vance DE. Phosphatidylcholine metabolism and choline kinase in human osteoblasts. Biochim Biophys Acta - Mol Cell Biol Lipids. 2014;1841(6):859–67.

Zhang S, Duan L, He S, Zhuang G, Yu X. Phosphatidylinositol 3,4-bisphosphate regulates neurite initiation and dendrite morphogenesis via actin aggregation. Cell Res. 2017;27(2):243-73.

Mizuguchi M, Yamada M, SUK I, Rhee SG. Phospholipase C isozymes in neurons and glial cells in culture: an immunocytochemical and immunochemical study. Brain Res. 1991;548:35-40.

Bieberich E. There is more to a lipid than just being a fat: sphingolipid-guided differentiation of oligodendroglial lineage from embryonic stem cells. Neurochem Res. 2011;36(9):1601-1611.

Laubner D, Breitling R, Adamski J. Embryonic expression of cholesterogenic genes is restricted to distinct domains and colocalizes with apoptotic regions in mice. Brain Res Mol Brain Res. 2003;115(1):87-92.

Roux C, Wolf C, Mulliez N, Gaoua W, Cormier V, Chevy F, Citadelle D. Role of cholesterol in embryonic development 1 – 4. 2018;71:1270–9.

Bieberich E. It’s a lipid’s world: Bioactive lipid metabolism and signaling in neural stem cell differentiation. Neurochem Res. 2012;37(6):1208-29.

Rooney, S. Gobran, L. Marino, A. Maniscalco, W. Gross I. Effects of betamethasone on phospholipid content, composition and biosynthesis in the fetal rabbit lung.Biochim Biophys Acta. 1979; 572(2):64-76.

Kent C. Regulation of Phosphatidylcholine : Choline. Prog Lipid Res. 1991;29:87-105.